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Abstract. Most of the traditional methods for shape classification are based on 
contour. They often encounter difficulties when dealing with classes that have 
large nonlinear variability, especially when the variability is structural or due to 
articulation. It is well-known that shape representation based on skeletons is 
superior to contour based representation in such situations. However, 
approaches to shape similarity based on skeletons suffer from the instability of 
skeletons and matching of skeleton graphs is still an open problem. Using a 
skeleton pruning method, we are able to obtain stable pruned skeletons even in 
the presence of significant contour distortions. In contrast to most existing 
methods, it does not require converting of skeleton graphs to trees and it does 
not require any graph editing. We represent each shape as set of shortest paths 
in the skeleton between pairs of skeleton endpoints. Shape classification is done 
with Bayesian classifier. We present excellent classification results for 
complete shape. 
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1   Introduction 

An important goal in image analysis is to classify and recognize objects. They can be 
characterized in several ways, using color, texture, shape, movement, and location. 
Shape, as a significant factor of objects, is an important research direction in image 
classification and recognition. Shape of planar objects can be described based on their 
contours or on skeletons.  

When utilizing contours in classification and recognition, shape classes that have a 
large nonlinear variability of global shape, due to structural variation, articulation, or 
other factors, present a challenge for several existing shape recognition approaches. 
Approaches that match the target shape to stored example shapes require a large 
number of stored examples to capture the range of variability [1]. Furthermore, 
existing example-based and model-based approaches cannot handle object classes that 
have different parts or numbers of parts without splitting the class into separate 
subclasses. This type of structural variation can be handled by approaches that 
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represent part relationships explicitly and match shapes syntactically; however, these 
structural approaches are computationally expensive [2].  

On the other hand, skeleton (or medial axis), which integrates geometrical and 
topological features of the object, is an important shape descriptor for object 
recognition [4]. Shape similarity based on skeleton matching usually performs better 
than contour or other shape descriptors in the presence of partial occlusion and 
articulation of parts [5][6][7][1]. However, it is a challenging task to automatically 
recognize the objects using their skeletons due to skeleton sensitivity to boundary 
deformation [8]. Usually the skeleton branches have to be pruned for recognition 
[8][9][10][11]. Moreover, another major restriction of recognition methods based on 
skeleton is a complex structure of obtained tree or graph representations of the 
skeletons. Graph edit operations are applied to the tree or graph structures, such as 
merge and cut operations [12][13][14][15][16], in the course of the matching process. 
Probably the most important challenge for skeleton similarity is the fact that the 
topological structure of skeleton trees or graphs of similar object may be completely 
different. Besides, some methods [21] have focused on utilizing geometry measures to 
gauge the similarity of 2D shapes by comparing their skeletons. This fact is illustrated 
in Fig. 1. Although the skeletons of the two horses (a) and (b) are similar, their 
skeleton graphs (c) and (d) are very different. This example illustrates the difficulties 
faced by approaches based on graph edit operations in the context of skeleton 
matching. To match skeleton graphs or skeleton trees like the ones shown in Fig. 1, 
some nontrivial edit operations (cut, merge, et al.) are inevitable.  

 
                                         (a)                                        (b) 

  
                                        (c)                                         (d) 

Fig. 1. Visually similar shapes in (a) and (b) have very different skeleton graphs in (c) and (d) 

On the other hand, skeleton graphs of different objects may have the same 
topology as shown in Fig. 2. The skeletons of the brush in Fig. 2(a) and the pliers in 
Fig. 2(b) have the same topology as shown in Fig. 2(c). 
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                             (a)                         (b)                           (c) 

Fig. 2. Dissimilar shapes in (a) and (b) can have the same skeleton graphs (c) 

The proposed method combines Bayesian classifier and a novel skeleton 
representation that overcomes the above limitations. This paper utilizes a three-level 
statistical framework including distinct models for dataset, class, and part. Bayesian 
inference is used to perform classification within this framework. Based on Bayes 
rule, the posterior probabilities of classes can be computed by the difference between 
skeletons of query shape and the shape in dataset. In the proposed framework, it can 
work well to classify complete shapes. 

In section 2, the background of the related method will be discussed. The way to 
obtain and represent skeletons is introduced in section 3 and 4. The Bayesian 
framework is given in the section 5. In section 6, experimental results and analysis on 
two different datasets have been given. At last, conclusion and future work are drawn 
out. 

2   Background  

This section briefly introduces some recent methods developed for shape matching, 
including classification, detection, and retrieval. A number of approaches are based on 
the contour. Belongie et al. [1] proposed the concept of ‘shape context’, which are 
log-polar histograms among different points on the shape. Through finding the 
correspondence between points on different shapes, this approach can get the 
similarity between the shapes. Some methods used boosting to classify objects. Bar-
Hillel, et al. [17] designed a classifier based on a part-based, generative object model. 
The approach given by Opelt, et al. [18] developed a novel learning algorithm which 
uses Adaboost to learn the shape features. Besides the learning algorithm, Gorelick  
et al. [19] used the Poisson Equation to extract various shape properties for shape 
classification. Tu and Yuille presented an algorithm for shape matching and 
recognition based on a generative model for how one shape can be generated by the 
other [26]. Sun and Super [3] used distribution of contour parts in known object 
classes to classify shapes with Bayesian classifier. Their classification works only for 
complete query shapes. 

In contrast to the methods based on contour, many researchers have worked on the 
approaches based on skeleton. Zhu et al. matched the skeleton graphs of objects using 
a branch-bounding method that was limited to motionless objects [12]. Shock graph 
was a kind of ARG proposed by Siddiqi and Dickinson et al [24][25]., which was 
based on the shock Grammar. The distance between subgraphs was measured by 
comparing the eigenvalues of their adjacency matrices. Besides the methods for shape 
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similarity based on skeleton, a few approaches implemented the skeleton in 
classification. Sebastian. et al [23] discussed an indexing technique on shock graph, 
Shokoufandeh, A et al [22]describe a framework for indexing such representations 
that embeds the topological structure of a directed acyclic graph (DAG) into a low-
dimensional vector space The main reason for this is that the past methods have high 
complexity. The proposed method defines a novel approach to classify the shape. The 
main difference between the proposed method and other methods is it utilizes the 
skeleton path into the Bayesian framework, which has never been discussed before. 
The results are very promising and the complexity of the proposed method is much 
lower than current methods, such as shock graph [2]. 

3   Obtain Skeleton by Skeleton Pruning  

Any topology preserving method can be used to compute skeletons. We used the 
method by Choi et al. [9]. 

The limitation of the skeleton is that it is sensitive to the boundary deformation and 
the noise. Therefore, it is difficult to obtain the ideal skeletons to recognize the 
objects. In order to solve this problem, this method utilizes skeleton pruning 
introduced in [10] to improve the skeleton. First, Discrete Curve Evolution (DCE) 
simplifies the polygon. Then the skeleton is pruned so that only branches ending at 
the DCE vertices remain. For example, in Fig. 3 (a) the skeleton contains a lot of 
noise. In Fig. 3 (b) all the endpoints (denoted by 1, 2, …, 14) of the elephant’s 
skeleton are vertices of the DCE simplified polygon (in red). The pruned skeleton is 
guaranteed to preserve the topology of the shape and it is robust to noise and 
boundary deformation [10]. Moreover, the skeleton endpoints are guaranteed to lie on 
the object contour. 

  
                                          (a)                        (b) 

Fig. 3. (a) The original input skeleton. (b) The skeleton pruned with contour partitioning [10]. 

4   Shape Representation with Skeleton Paths 

The endpoint in the skeleton graph is called an end node, and the junction point in the 
skeleton graph is called a junction node. The shortest path between a pair of end 



 Shape Classification Based on Skeleton Path Similarity 379 

nodes on a skeleton graph is called a skeleton path. We show a few example skeleton 
paths in Fig 4.  

 

Fig. 4. The elephant’s skeleton and the shortest paths (in red) between the pairs of endpoints 

The shortest paths between every pair of skeleton endpoints are represented as 
sequences of radii of the maximal disks at corresponding skeleton points. 

Suppose there are N end nodes in the skeleton graph G to be matched, and let vi (i 
= 1, 2, …, N) denote the ith end node along the shape contour in the clockwise 
direction. Let sp(m, n) denote the skeleton path from vm to vn. We sample sp(m, n) 
with M equidistant points, which are all skeleton points. Let Rm,n (t) denote the radius 
of the maximal disk at the skeleton point with index t of in sp(m, n). Let Rm,n denote a 
vector of the radii of the maximal disks centered at the M sample skeleton points on 
sp(m, n): 

Rm,n=(Rm,n(t))t=1,...,M=(r1,r2,…,rM) (1) 

In this paper, the radius Rm,n(s) is approximated with the values of the distance 
transform DT(s) at each skeleton point s. Suppose there are N0 pixels in the original 
shape S. To make the proposed method invariant to the scale, we normalize Rm,n(s) in 
the following way: 
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where si (i=1, 2, …, N0) varies over all N0 pixels in the shape.  
The shape dissimilarity between two skeleton paths is called a path distance. If R 

and R' denote the vectors of radii of two skeleton paths sp and sp' respectively, the 
path distance pd between sp and sp' is: 
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5   Bayesian Classification  

Compared to the method in [3], which uses contour segments and Bayesian 
classification to perform a recognition task, our method uses paths instead of contour 
segments. The basic idea is very simple, similar shape should have similar paths. 
Therefore, the difference of paths between similar shapes should be small. This 
Bayesian framework can obtain the classification by summing the difference of query 
shape’s skeleton paths to the all of the shapes’ skeleton paths in the same class. The 
smaller the difference is, the more possible the query shape belongs to the class.  

Given a shape ω' that should be classified by Bayesian Classifier, we build the 
skeleton graph G(ω') of ω' and input G(ω')as the query. For a skeleton graph G(ω'), if 
the number of end nodes is n, the corresponding number of paths is n(n-1) compared 
to the number of parts n! in [3]. Then, the Bayesian Classifier computes the posterior 
probability of all classes for each path sp'∈G(ω'). By accumulating the posterior 
probability of all of the paths of G(ω'), the system automatically yields the ranking of 
class hypothesis.  

If two different paths have small pd value, the value of probability should be large. 
Otherwise, it should be small. Therefore, we use Gaussian distribution to compute the 
probability p:  
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For different datasets, the α should be different. In our experiments, for the dataset 
of Aslan and Tari [20], α=0.15 and α=0.05 for Kimia dataset [2]. 

The class-conditional probability for observing sp' given that ω' belongs to class ci is: 
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We assume that all paths within a class path set are equiprobable, therefore 
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ci is one of the M classes. 
The posterior probability of a class given that path sp'∈G(ω') is determined by 

Bayes rule: 
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Similar to the above assumption, p(ci)=1/M. The probability of sp' is equal to  
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Through the above formulas, we can get the posterior probability of all paths of 
G(ω'). By summing the posterior probabilities of a class over the set of paths in the 
input shape, we obtain the probability that the input shape belongs to a given class. 
Obviously, the biggest one, Cm, is the class that input shape belongs to. 
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6   Experiments  

In this section, we evaluate the performance of the proposed method based on the 
dataset of Aslan and Tari [20]. We selected this dataset due to large variations of 
shapes in the same classes. As shown in Fig. 5, Aslan and Tari dataset includes 14 
classes of articulated shapes with 4 shapes in each class. We use each shape in this 
dataset as a query, and show the classification result of our system in Fig. 6. We used 
leave one out classification, i.e., the query shape was excluded from its class. 

 

Fig. 5. Aslan and Tari dataset [20] with 56 shapes 

The table in Fig. 6 is composed of 14 rows and 9 columns. The first column of the 
table represents the class of each row. For each row, there are four experimental 
results which belong to the same class. Each experimental result has two elements. 
The first one is the query shape and the second one is the classification result of our 
system. If the result is correct, it should be the equal to the first column of the row. 
The red numbers mark the wrong classes assigned to query objects. Since there is 
only one error in 56 classification results, the classification accuracy in percentage by 
this measure is 98.2%. In fact, the only error is reasonable. Even a human can 
misclassify it. The query shape is very similar to star, the class 8. Therefore, in some 
sense, we can conclude that all of our results are correct.  
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class query result query result query result query result 
1  1  1  11 

 
9 

2  2  2  2  2 

3  3  3  6  3 

4  4  4  4  4 

5  5  5  5  5 

6  6  6  6  6 

7  7 
 

7  7  7 

8  8  8  8  8 
9  9  9  9  9 

10  10  10  10  10 

11  11  11  11  11 

12  12  12 
 

12  12 

13 
 

13  8  13  13 

14  14  14  14  14 

Fig. 6. Results of the proposed method on Aslan and Tari dataset [20]. Since each class is 
composed of 4 shapes, the class of query and the result should be the same. Red numbers mark 
the results where this is not the case. 

class query result query result query result query result 
1  1  1  11  9 

2  2  2  2  2 

3  3  3  6  3 

4  4  4  4  4 

5  5  5  5  5 

6  6  6  6  6 

7  7 
 

7  7  7 

8  8  8  8  8 
9  9  9  9  9 

10  10  10  10  10 

11  11  11  11  11 

12  12  12 
 

12  12 

13 
 

13  8  13  13 

14  14  14  14  14 

Fig. 7. Results of the Sun and Super’s method on Aslan and Tari dataset [20]. Since each class 
is composed of 4 shapes, the class of query and the result should be the same. Red numbers 
mark the results where this is not the case. 
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We compared our method to the method presented by Sun and Super in [3], their 
method uses the same Bayesian classifier but is based on contour parts. As shown in 
Fig.7, their method yields 4 wrong results for 56 query shapes, so the accuracy is only 
92.8%. 

Moreover, the classification time for all 56 shapes with the proposed method takes 
only 5 minutes on the PC with 1.5 GHZ CPU and 512M RAM. However, Sun and 
Super’s method takes 13 minutes on the same computer.  

We also apply the proposed method to Kimia dataset [23] as shown in Fig. 8, 
which includes 18 classes, and each class is consisted of 12 shapes. In each 
experiment, we remove the query shape from the dataset Therefore there are 215 
shapes in dataset and one query shape. Since there are only 12 errors in 216 
classification results, the classification accuracy in percentage is 94.4%, which is 
comparable to Sun and Super’s result [3]. Though the accuracy of Sebastian et al [23] 
on the dataset is 100 percent which is better than the proposed method, the proposed 
method is still promising.  The classification time for all 216 shapes with the proposed 
method takes only nearly 25 minutes on the PC with 1.5 GHZ CPU and 512M RAM. 

 

Fig. 8. Eighteen classes in Kimia dataset [23] 

In Fig.9, we just give out 2 correct experimental results for each class and the last 
four images are chosen from the 12 error classifications, the wrong classification 
results are in red. The reason for the first wrong classification is the skeleton of head 



384 X. Yang et al. 

of the bird is similar to the same part of camel. For the glass, the skeleton is similar to 
the end of the bone. Moreover, the turtle is misclassified to elephant, as the tail part is 
like the same part of elephant. The Misk is like the brick in some sense, therefore the 
misclassification is reasonable. 

Moreover, based on the classification results, the proposed method is rotation and 
scale invariant. In the experiment of the first dataset, Aslan and Tari dataset [21], the 
shapes have been rotated but the results are still correct. For the dataset of kimia [23], 
the size of the shape in the same class is different from each other. The proposed 
method can still obtain over 94 percent accuracy. 
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Fig. 9. Part of the classification results on Kimia dataset 

7   Conclusions  

In this paper, we propose a novel method to classify the whole shape that is based on 
statistics of dissimilarities between shortest skeleton paths. Compared to the shock 
graph, we use the radius distance instead of the topology of skeleton to measure the 
similarity between two shapes. As the proposed method need not find corresponding 
between different skeleton paths, It avoids complex discussion on finding 
corresponding between two skeletons. Moreover, the result of two different datasets 
demonstrated that skeleton paths are very efficient shape representation for 
classification. However, as the probability of two paths is calculated based on the 
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radius difference between two paths, if one shape’s radiuses are totally different from 
other shapes in its class, the system may misclassify it to other classes. It is the 
drawback of the proposed method compared to the shock graph. In the future, our 
work will focus on solving this kind of problems and implementing the classification 
method in the part classification. 
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